A METHOD OF CALCULATING THE TEMPERATURE
DISTRIBUTION IN A COMPLEX STRUCTURE

V. S. Khokhulin UDC 533,24,02

A mathematical model is given for the temperature distribution in a structure when the tem-
peratures in the 1nd1v1dua1 elements are described by one~-dimensional heat-conduction equa-
tions.

We consider here the construction of 2 mathematical model for a structure; the problem of calcu-
lating the temperature distributions in the individual elements is assumed in essence to have been solved.
We now consider element j in the structure. The temperature distribution in this element is described by
a nonlinear heat-conduction equation:

ZL=LT+q, )

with the initial and boundary conditions
Tjit=0 =T}, 2)
Tyr, =T, 3)

The simplest numerical solution to the boundary-value problem of (1)~(3) occurs [1] for a one-di~
mensional differential operator LjT; as LjT increases in dimensions, the computing time and store volume
increase rapidly, particularly on account of the nonlinearity.

When a mathematical model is being drawn up, one can incorporate the working conditions to sim-
plify the freatment and reduce the dimensions of I;T; for instance, inthe case of a thin-walled shell
subject to axially symmetrical heat loading, it is sufficient to examine the one-dimensional axial temper-
ature distribution, i.e,, here it is sufficient to use a one-dimensional LjT operator. Then the heat-source

function gy,, in (1) will be the sum
V_] ext int

qu = qu hy qu ’ (4;)

where q%};t is the function representing the effects of the environment on the element, together with those

of a variety of heat carriers if the element is heated or cooled regeneratively, and so on, while q1\171t is the

internal heat-release function for the element.

One might quote several examples where such assumptions simplify the calculation of the tempera-
ture distribution by reducing the dimensions of LT

The interaction between adjacent elements is incorporated by specifying the condition for continuity
of the temperature and heat flux at the junction between elements:

Tir,=Tr,,n=12, ..., N}/ (5)
.
N oTr
N n
= Ml T, = | ®)

Then calculation of the temperature distributions in such a structure may be formulated as follows:
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/ @ r one has to find a temperature distribution in a system of coupled elements
® @ with a given initial temperature of (2) if the one-dimensional equation of

)] (1) applies to each element, while (5) and (6) are met at the boundaries of
an element,

3 ® " This problem can be solved in the general case by electrical simula-
tion methods; here we consider a method that can be used with a digital

, ® v ®_-]Lpzr computer,
' ! We use a finite-difference approximation for the differential opera-
@ % @\i@ tors to convert the problem of (1), (2), (3), (5), and (6) to a difference
oA problem on graphs [3,4]. We represent the system of elements as an
oriented graph G'(V) (Fig. 1), on each arc of which Eq3€G'(V) (a is the
Fig. 1. The oriented initial point of an arc and 3 is the final point), where we are given the one-
graph G'(V). dimensional heat-conduction equation of (1). We introduce the net wy on
Eqp; the finite-difference approximation allows one to reduce the solution
of (1) to that of a system of algebraic equations having a three-diagonal matrix for each arc of the graph.
On the basis of the number of arc, we represent the complete system of algebraic equations as follows:

TioEag) =T, (%),
Aji(Eqp) Ti i (Eas) —Cii(Egp) Tii+Bi: (Eqp) Ti ot (Enp) =
=—Fji(Eep) i=1,2, ..., Nj—1, N;=N,;(Egp), a=1, 2, ..., N,
Tiw; (Eap) =T;(xs), Eap€G (V), (7)

2+ Fibi [— Cr0(Eqg) Ti0 (Eqg) + Bro(Eqp) Trt (Eqp) +
BeGq

+ Fio(Eagll + 2 FAs1AG N, o) Th, w1 (Eag) —
BeGy

'—CLN,' (Eas) TJ':NJ- (Ecv.ﬂ) + Fi-Nj (Eag)] =0.

We derive the solution to (7) by the cyclic pivot method [5]; the desired function is then defined by

Fipr =0, T, + B+ T () on E,p(BEGI), (8)

Ty=aTip 4 Bt + 77 (55) on Eop(BEGa). 9
The fitting coefficients oj, Bi, i, E,i +1; Ei 1 ;i 41 are selected to make the function Tj,i satisfy

system (7), while (8) and (9), respectively, withi = Ny — 1 and i = 0 become identities, i.e.,
oy = A7 A,;.t,
Biot = A7 (Fyi + BB,
Yiot = A7 By, A =Cii— Biaa,
i=N;—1, N;—2, ..., 0,

10)
—&Nj-—l = A7 (Fro+ A B),
7¥i+1 = Ki—l Ai.i‘_Yp Zi = Ci,i _Ai.i—a'i:
By — A7 (4B, Fi), i=1,2, ..., N
o, =p, =0, 9,=0.
Weputi=0in (8) andi= Nj —~— 1 in (9) on the basis that
T, (Eya) = Ty (Bag) = T () 1)

v€Ga, BEGT,

toget foralla =1, 2, ..., N, [3] a system of algebraic equations for the temperatures at the vertices of
the graph (@t the points where the elements join):
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Fig. 2, (a) Temperature distribution (b) on graph at time ¢,

T = X AasT () + D 2=1,2, ..., N, 12)
BeG,,
where
4yy = DF* { Pty (Eug) 11 (Eeg), BEGE, 0
fids ANj (Eqp) YN ;-1 (Epo), BEGE,

@(@) 1’3_1 [ 2 f ;\/ A (Ezzﬁ) ﬁ——l (Eaﬂ) -+ i fI;" AN (Eaa)ENj+z (Eaﬁ)} . (14)

pecy Becy
D, = 2 FihBy (Eqg) + 2 fjszﬁj (Egn)- 15)

BeGy 8eGy

The solution to system (12) gives the temperatures at the joints, and then these can be used in solv-
ing (7) to find the temperature distribution in the structure,

As an example we give the results for the solution of (1), (2}, (3), (5), and {8) as specified via the
graph of Fig. 2a; all the coefficients in (1) were takenas 1., Figure 2b shows the temperature distribu~
tion on the graph for a particular instant t, The figure also shows the source functions and the cross-
sectional areas of the joined elements.

To conclude, we note that thermal models for complex structures based on graphs are simple and
convenient means of incorporating the interaction between clements in a fairly rigorous fashion.

NOTATION

T, temperature; t, time; x, linear coordinate; LT, parabolic differential operator; gy, source
function; qVXt, source function for effects of ambient medium heat carrier, etc.; q{}t, internal heat-re~
lease function; I', element boundary; f, contact area of parts, A, thermal conductivity; V,setofver-
tices; Eqgp3, are; Gp, set of arcs converging at vertex o; Ga, set of arcs diverging from vertex o Gy
set of arcs at vertex o; wh, net onarc Eqgs N, set of graph vertices; Ny, set of graph arcs convergmg
at vertex o Nj, mumber of nodes on arc j; T;,i, network funection at time instant k; T, i network funce
tion at time instant k # 0y «, $, and v, vertex indices: j, arc index: i, node index,
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